Exercise 9.2.3

Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.

$$
\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y}=\frac{\partial \psi}{\partial z}
$$

Solution

Bring $\partial \psi / \partial z$ to the left side.

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y}-\frac{\partial \psi}{\partial z}=0 \tag{1}
\end{equation*}
$$

Since ψ is a function of three variables $\psi=\psi(x, y, z)$, its differential is defined as

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial z} d z
$$

Dividing both sides by $d x$, we obtain the relationship between the total derivative of ψ and the partial derivatives of ψ.

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{d y}{d x} \frac{\partial \psi}{\partial y}+\frac{d z}{d x} \frac{\partial \psi}{\partial z}
$$

In light of this, equation (1) reduces to the ODE,

$$
\frac{d \psi}{d x}=0
$$

along the characteristic curves that satisfy

$$
\begin{aligned}
& \frac{d y}{d x}=1, \quad y(0, \xi)=\xi \\
& \frac{d z}{d x}=-1, \quad z(0, \eta)=\eta
\end{aligned}
$$

where ξ and η are characteristic coordinates. Integrate both sides of each equation with respect to x.

$$
\begin{aligned}
\psi(x, \xi, \eta) & =f(\xi, \eta) \\
y(x, \xi) & =x+\xi \\
z(x, \eta) & =-x+\eta
\end{aligned}
$$

Here f is an arbitrary function of the two characteristic coordinates. Use the latter two equations to eliminate ξ and η from the first one.

$$
\psi(x, y, z)=f(y-x, z+x)
$$

